RFID Module & Relay Board Kit 03

The RFID Reader Board

- 1. provide 1 buzzer (GPIO18)
- 2. provide 1 Big Push Switch (GPIO27)
- 3. Green LED (GPIO19) Red LED (GPIO24)
- 4. provide RFID socket (SPI signal) / NRF24L01 socket (SPI signal) you can choose use RFID or NRF24L01 (both use SPI signal)
- 5. Provide 1 extra i2c device input port, for 3.3V device
- 6. provide DS18B20 temperature sensor socket (GPIO4)
- 7. provide IR Receiver sensor socket (GPIO23)
- 8. provide IR PIR motion sensor socket (GPIO22)
- 9. provide one Relay (GPIO17)
- 10. 1 step Motor (28byj48-5V) socket (GPIO 5,6,12,13)
- 11. HAT EEPROM 24c32
- 12. TXD, RXD Bluetooth module socket
- 13. ESP8266 WiFi module socket

Demo program download from our web site http://www.pridopia.co.uk/pi-rfid-kit03.html

Package Content

1x Rs-Pi RFID Reader 5x S50 Fudan Card 1x Key Chains 1x 1 RFID Kit03 Relay GPIO Board 1x manual

RFID socket From pin1 (SDA,SCK,MOSI,MISO,IRQ,GND,RST,3V3 RFID J24 1 0 0 0 0 0 0 0 8 SDA SCK MOSIMISO IRQ GND RST 3V3

NRF24L01 socket

From pin1 (GND,3V3,GPIO25,CE0,SCLK,MOSI,MISO,X)

RFID GUI control panel software

1. "Read RFID" read card information to Program 2. "Save" save card information to file

3. "Load" load card information from file

4. "on" turn on/off switch to trigger

5. "off" turn on/off PIR sensor to trigger 6. "on" turn on/off 18B20 sensor to trigger

6a. 18b20 temperature trigger (Above will trigger the relay / stepper)

- 7. "Trigger" enable trigger for Relay & Stepper Motor
- 8. Relay "On"/"Off" 9. Relay delay time ? sec
- 10. Relay Repeat Count 11. Relay Pause after repeating on/off
- 12. Stepper Motor "Off"/"On" 13. Stepper Motor Clock wise/counter clockwise

14. Stepper Motor speed ms/step $\;$ 15. "Turns" how many steps you want stepper motor turn

- 16. card information screen 17. System message screen
- 18. RFID control panel software icon

ESP8266 WiFi serial module AT command in CuteCom

- * speed 9600 or 115200
- * Choose CR,LF line end

Bluetooth v2.0 HC-05 AT command in CuteCom

* speed 9600 * Choose CR,LF line end

* 2 way to enter AT command mode

1. * power on Pi first, press and hold the micro switch, then plug in the socket, release the switch

2 * power on Pi first, move jumper to 1-2, then plug in the socket, remove jumper to 2-3

HAT EEPROM read/Write

enable the I2C buses Go to the file /boot/config.txt. At the end, find the lines (or add them yourself, that say:

dtparam=i2c_arm=on dtparam=i2c_vc=on dtparam=spi=on

Now, after the above, give it a good reboot. Now,

when you give it an **Is /dev**, you should get entries that look like: **i2c-0 i2c-1 spidev0.0 spidev0.1**

EEPROM utilities from the git repo:

https://github.com/raspberrypi/hats/tree/master/eepromutils

J48 write enable jumper

RFID Door.sbRFID Reader.sbGPIO-Card-RFID-Door.sbDownload GPIO library

https://pypi.python.org/pypi/RPi.GPIO GPIO library

GPIO library - RPi.GPIO-0.5.6.tar.gz

Install python, library and run the test program

sudo apt-get install python-dev

wget http://www.pridopia.co.uk/pi-pgm/RPi.GPIO-0.5.6.tar.gz # gunzip RPi.GPIO-0.5.6.tar.gz # tar -xvf RPi.GPIO-0.5.6.tar # cd RPi.GPIO-0.5.6 # sudo python setup.py install

Pi_Scratch software support

Pi_Scratch interface software download from our web site

http://www.pridopia.co.uk/rs-pi-set-scratch.html

Install tools for RFID kit in Raspberry Pi , in our Pi_Scratch_v268 folder" Installer"

sudo python RFID-Installer.py -- if you already install previous Pi_Scratch ver already. first time user, use sudo python Install.py

Scratch control demo

1)Command "RFID"+"INIT"+"0" or "1"

will initial SPI signal to active RFID Reader
2) you will see "LastRFID" & "RFID" in Sensors

Scratch demo read RFID and GPIO output

scratch demo code (read card and compare with database)

ADD RFID Card into data base

Press "space" key then scan your RFID card

Active with Step Motor and GPIO Switch input

scratch demo file